1. Hauberg, S., Freifeld, O. & Black, M. J. A Geometric Take on Metric Learning, NeurIPS (2012)
2. Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K. & Winther, O. Ladder variational autoencoders in NeurIPS (2016)
3. Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A., & Hamelryck, T. A generative, probabilistic model of local protein structure. PNAS 105, 8932–8937 (2008)
4. Boomsma, W., Tian, P., Frellsen, J., Ferkinghoff-Borg, J., Hamelryck, T., Lindorff-Larsen, K., & Vendruscolo, M. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts. PNAS 111, 13852–13857 (2014)
5. Boomsma, W., Frellsen, J. Spherical convolutions and their application in molecular modelling. NeurIPS (2017).
6. Arvanitidis, G., Hansen, L. K. & Hauberg, S. Latent space oddity: On the curvature of deep generative models, ICLR (2018)
7. Weiler, M., Geiger, M., Welling, M., Boomsma, W. & Cohen, T. S. 3D Steerable CNNs: Learning rotationally equivariant features in volumetric data, NeurIPS (2018)
8. Mallasto, A., Hauberg, S. & Feragen, A. Probabilistic Riemannian sub- manifold learning with wrapped Gaussian process latent variable models, AISTATS (2019)
9. Hauberg, S. Principal curves on Riemannian manifolds. IEEE Trans. Pat- tern Anal. Mach. Intell 38, 1915–1921 (2015)
10. Skafte, N., Jørgensen, M. & Hauberg, S. Reliable training and estimation of variance networks, NeurIPS (2019)
11. Palm, R., Paquet, U. & Winther, O. Recurrent relational networks in NeurIPS (2018)
12. Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)
13. Armenteros, J.J.A., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S., von Heijne, G. and Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019)
14. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M. & Borgwardt, K. Scalable kernels for graphs with continuous attributes, NeurIPS (2013)
15. Feragen, A., Lo, P., de Bruijne, M., Nielsen, M. & Lauze, F. Toward a theory of statistical treeshape analysis. IEEE Trans. Pattern Anal. Mach. Intell 35, 2008–2021 (2012)
16. Hauberg, S., Schober, M., Liptrot, M., Hennig, P. & Feragen, A. A random riemannian metric for probabilistic shortest-path tractography, MICCAI (2015)
17. Navarro, A., Frellsen, J. & Turner, R. The Multivariate Generalised von Mises Distribution: Inference and Applications, AAAI (2017)
18. Mattei, P.-A. & Frellsen, J. MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets, ICML 97 (2019)
19. Maaløe, L., Sønderby, C. K., Sønderby, S. K. & Winther, O. Auxiliary deep generative models, ICML (2016)
20. Fraccaro, M., Sønderby, S. K., Paquet, U. & Winther, O. Sequential neural models with stochastic layers, NeurIPS (2016)
21. Maaløe,L, Fraccaro, M.,Lievin, V. & Winther, O. BIVA: A very deep hierarchy of latent variables for generative modeling, NeurIPS (2019)